Examining of a tumor system with Caputo derivative
نویسندگان
چکیده
Tumor diseases have killed many people around the world for centuries. For this purpose, a lot of scientists analyzed immune system’s cells in order to cope with tumor growths living beings. reason, we examine system reflecting relationship between and growth study. This is handled traditional Caputo fractional derivative. We give stability analysis equilibrium points solution properties system. Then, conditions about existence uniqueness are clear. In conclusion, solve benefiting from Grünwald-Letnikov scheme.
منابع مشابه
Asymptotical Stability of Nonlinear Fractional Differential System with Caputo Derivative
This paper deals with the stability of nonlinear fractional differential systems equipped with the Caputo derivative. At first, a sufficient condition on asymptotical stability is established by using a Lyapunov-like function. Then, the fractional differential inequalities and comparison method are applied to the analysis of the stability of fractional differential systems. In addition, some ot...
متن کاملOnmemo-viability of fractional equations with the Caputo derivative
*Correspondence: [email protected] Department of Mathematics, Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, Białystok, 15-351, Poland Abstract In this paper viability results for nonlinear fractional differential equations with the Caputo derivative are proved. We give a necessary condition for fractional viability of a locally closed set with respect to a nonli...
متن کاملFractional Hamilton formalism within Caputo ’ s derivative
In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canoni-cal Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange form...
متن کاملFractional variational problems with the Riesz-Caputo derivative
In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for sever...
متن کاملTransient Electro-osmotic Slip Flow of an Oldroyd-B Fluid with Time-fractional Caputo-Fabrizio Derivative
In this article, the electro-osmotic flow of Oldroyd-B fluid in a circular micro-channel with slip boundary condition is considered. The corresponding fractional system is represented by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Closed form solutions for the velocity field are acquired by means of Laplace and finite Hankel transforms. Additionally...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bal?kesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi
سال: 2022
ISSN: ['1301-7985', '2536-5142']
DOI: https://doi.org/10.25092/baunfbed.1113646